102. Reaktion von Phenyldiazomethan mit 1,3-Thiazol-5(4H)-thionen: Basenkatalysierte Ring-Öffnung des Primäradduktes

von Mireille Petit^a)¹), Anthony Linden^a), Grzegorz Mlostoń^b) und Heinz Heimgartner^a)*

^a) Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich
^b) Institut für Chemie der Universität Łódź, Narutowicza 68, PL-90-136 Łódź

(30.III.94)

Reaction of Phenyldiazomethane with 1,3-Thiazole-5(4H)-thiones: Base-Catalyzed Ring Opening of the Primary Adduct

Reaction of 1,3-thiazole-5(4H)-thiones 1 and phenyldiazomethane (2a) in toluene at room temperature yields the thiiranes *trans*- and *cis*-1,4-dithia-6-azaspiro[2.4]hept-5-enes (*trans*- and *cis*-4; *Scheme 2*). With Ph₃P in THF at 70°, these thiiranes are transformed stereospecifically into (E)- and (Z)-5-benzylidene-4,5-dihydro-1,3-thiazoles 5, respectively. In the presence of DBU, 1 and 2a react to give 1,3,4-thiadiazole derivatives 6 or 7 *via* base-catalyzed ring opening of the primary cycloadduct (*Scheme 3*). In the case of 2-(alkylthio)-substituted 1,3-thiazole-5(4H)-thiones 1c and 1d, this ring opening proceeds by elimination of the corresponding alkylthiolate, yielding isothio-cyanate 7. The structures of (Z)-5c and 6b have been established by X-ray crystallography.

1. Einleitung. – Vor kurzem haben wir über die Umsetzung von 1,3-Thiazol-5(4*H*)thionen I mit Di(*tert*-Butyl)- und Diphenyldiazomethan (II, $R^3 = t$ -Bu bzw. Ph) berichtet [1]. 1,3-Dipolare Cycloaddition mit der (C=S)-Bindung von I liefert das spirocyclische Addukt III, das mit $R^3 = t$ -Bu isoliert werden konnte (*Schema 1*). In diesem Falle ist die

¹) Teil der Diplomarbeit von M. P., Universität Zürich, 1994.

Bildung von III reversibel, während mit $R^3 = Ph$ spontane N_2 -Abspaltung zum stabilen Thiiran IV führt. Zwischenprodukt ist dabei ein Thiocarbonyl-ylid. Die Entschwefelung zum Methyliden-Derivat V ($R^3 = Ph$) gelingt mit Ph_3P bei 70°.

In analoger Weise reagieren 2-Diazopropan (II, $R^3 = Me$) [2] und Diazomethan (II, $R^3 = H$) [3] mit I. Bei der Umsetzung mit 2-Diazopropan konnten sowohl das Addukt III ($R^3 = Me$) als auch das Thiiran IV ($R^3 = Me$) als Zwischenprodukte nachgewiesen werden; bei Raumtemperatur war jedoch nur das 2-Propyliden-Derivat V ($R^3 = Me$) isolierbar. Im Falle von Diazomethan wurden zusätzlich zu IV und V ($R^3 = H$) Produkte isoliert, die durch Dimerisierung bzw. 1,3-dipolare Cycloaddition der intermediär gebildeten Thiocarbonyl-ylide entstehen.

Im Rahmen der Verallgemeinerung der Reaktion von I mit Diazo-Verbindungen führten wir nun auch Umsetzungen mit Phenyldiazomethan (2a) und Diazoessigsäureethylester (2b) [4] durch. In der vorliegenden Arbeit sind die Ergebnisse der Umsetzungen von 1 mit 2a beschrieben.

2. Ergebnisse. – Umsetzung von Phenyldiazomethan (2a) mit 1,3-Thiazol-5(4H)-thionen 1 (Schema 2). Phenyldiazomethan (2a) wurde nach [5] mittels der Bamford-Stevens-Reaktion hergestellt. Dabei erfolgt die basenkatalysierte Spaltung von Benzaldehyd-(2,4,6-triisopropylbenzol)sulfonyl-hydrazon [6] [7] zu 2a und 2,4,6-Triisopropylbenzolsulfinat unter Phasentransfer-Bedingungen. Die Toluol-Lösung des gebildeten 2a wurde ohne weitere Reinigung eingesetzt.

Die Umsetzung der Thiazol-thione 1a-c in Toluol mit 4–5 mol-equiv. 2a bei Raumtemperatur lieferte nach chromatographischer Aufarbeitung jeweils zwei Produkte im Verhältnis von *ca.* 1:1,7, bei denen es sich gemäss spektroskopischer Daten um die diastereoisomeren spirocyclischen Thiirane *trans-* und *cis-4* handelt (*Schema 2*). Die Zuordnung der *trans-* bzw. *cis-*Konfiguration wurde aufgrund der chemischen Verschiebungen der Me₂C(7)-Gruppe und von H–C(2) getroffen (*Tab. 1*).

	R ¹	trans-4		cis- 4		$IV (R^2 = Me, R^3 = Ph)$	
		$Me_2C(7)$	H-C(2)	$Me_2C(7)$	H-C(2)	$Me_2C(7)$	
a	PhCH ₂	1,30; 0,84	4,67	1,45; 1,43	4,07	1,29; 1,11	
	2	28,3; 22,6		24,9; 23,3		26,8; 22,3	
b	Ph	1,38; 0,95	4,86	1,55; 1,52	4,17	1,39; 1,20	
		28,3; 22,5		26,3; 24,7		27,1; 22,5	
c	MeS	1,27; 0,86	4,71	1,46; 1,41	4,09	1,31; 1,08	
		28,3; 22,8		26,4; 24,7		26,9; 22,8	

Tab. 1. Ausgewählte chemische Verschiebungen [ppm] von trans- und cis-4 in CDCl3

Während die chemischen Verschiebungen der zwei Me-Gruppen an C(7) von *trans*-4 im ¹H-NMR-Spektrum deutlich verschieden sind ($\Delta \delta = 0,41-0,46$ ppm), unterschieden sie sich in den *cis*-Isomeren kaum ($\Delta \delta = 0,02-0,05$ ppm). Grosse Unterschiede der chemischen Verschiebungen ($\Delta \delta = 0,18-0,23$ ppm) werden auch bei den entsprechenden 2,2-Diphenyl-Derivaten (IV, $R^2 = Me$, $R^3 = Ph$) beobachtet [1]. Auch im ¹³C-NMR-Spektrum absorbieren die Me-Gruppen der *trans*-Isomeren bei unterschiedlichen chemischen Verschiebungen ($\Delta \delta = 5,5-5,8$ ppm), während $\Delta \delta$ bei den *cis*-Isomeren lediglich 1,6-1,7 ppm beträgt. Ein weiterer deutlicher Unterschied zeigt sich im ¹H-NMR für H-C(2), das in den *trans*-Isomeren bei 4,67-4,86 ppm absorbiert, in den *cis*-Verbindungen dagegen, als Folge der stärkeren Abschirmung durch die Me₂C(7)-Gruppe, bei 4,07-4,17 ppm.

Entschwefelung der Thiirane 4. Die Thiirane trans- und cis-4a-c sind nur mässig stabil und spalten beim Stehenlassen langsam S ab. Dabei scheint das sterisch weniger gehinderte cis-Isomere jeweils etwas stabiler zu sein. Die kontrollierte Entschwefelung von 4b und 4c zu den Benzyliden-Derivaten 5b bzw. 5c (Schema 2) gelang mit Ph₃P in THF bei 70°. Die Produkte wurden nach chromatographischer Reinigung in Ausbeuten von 43-63 % erhalten. Bemerkenswert ist der stereospezifische Verlauf der Reaktion: Aus trans-4b und trans-4c wird ausschliesslich (E)-5b bzw. (E)-5c gebildet und aus cis-4b und cis-4c nur (Z)-5b bzw. (Z)-5c.

Die Struktur von (Z)-5c wurde durch eine *Röntgen*-Kristallstrukturbestimmung ermittelt (*Fig., a, s. Exper. Teil*), die Zuordnung im Falle von 5b erfolgte aufgrund des Vergleichs der NMR-Daten mit denjenigen von (*E*)und (*Z*)-5c (*Tab.2*). Dabei absorbiert im ¹H-NMR-Spektrum Me₂C(4) der (*E*)-Isomeren als *s* bei nahezu der gleichen chemischen Verschiebung wie im entsprechenden Diphenylmethyliden-Derivat V ($R^2 = Me, R^3 = Ph$), während das Me₂C(4)-Signal der (*Z*)-Isomeren nach tiefem Feld verschoben ist. Analoges gilt für die ¹³C-NMR-Spektren. Umgekehrt ist der Befund für PhCH, das für (*E*)-5 sowohl im ¹H- als auch im ¹³C-NMR-Spektrum bei tieferem Feld erscheint als im Falle der (*Z*)-Isomeren.

		-				-
	R ^t	(E)- 5	(E)- 5			$\mathbf{V} \ (\mathbf{R}^2 = \mathbf{M}\mathbf{e}, \ \mathbf{R}^3 = \mathbf{P}\mathbf{h})$
		$Me_2C(4)$	PhCH	$Me_2C(4)$	PhCH	$Me_2C(4)$
b	Ph	1,46	6,87	1,62	6,53	1,42
		28,0	120,5	29,4	118,1	28,5
c	MeS	1,37	6,27	1,46	6,38	1,32
		28,0	120,1	29,6	117,8	28,5

Tab. 2. Ausgewählte chemische Verschiebungen [ppm] von (E) - und (Z) -5b und 5c in CDCl₃

Umsetzungen von 2a und 1 in Gegenwart von Basen. Bei der Umsetzung von 1a mit Diazoessigsäure-ethylester haben wir beobachtet, dass in Gegenwart von Anilin als Hauptprodukt eine Verbindung entsteht, bei deren Bildung der Thiazol-Ring geöffnet wird [4]²). Aus diesem Grunde wurden auch die Thiazol-thione **1a–d** mit **2a** in Gegenwart von Basen umgesetzt. Während mit Et₃N (*ca.* 2 mol-equiv.) keine Änderung der Produktzusammensetzung beobachtet wurde, bildete sich mit 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) jeweils ein neues Hauptprodukt in guter Ausbeute, das sowohl im ¹H- als auch im ¹³C-NMR-Spektrum nur ein Signal für die Me₂C-Gruppe aufweist. Im Falle der Umsetzungen mit **1a** und **1b** handelt es sich gemäss Elementaranalyse und Massenspektrum um (1:1)-Addukte. Charakteristisch sind weiter im ¹³C-NMR-Spektrum drei *s* bei *ca.* 200, 175 und 169 ppm. Mittels *Röntgen*-Kristallstrukturbestimmung wurde für das Produkt aus **1b** die Struktur des 1,3,4-Thiadiazol-Derivates **6b** bewiesen (*Schema 3, Fig., b*).

Einen andern Verlauf nahmen offensichtlich die Umsetzungen mit 1c und 1d: Aus beiden Ausgangsmaterialien wurde unter Abspaltung der Alkylthio-Gruppe dasselbe Produkt 7 gebildet (*Schema 3*). Charakteristisch für das überraschend stabile 7 sind die intensiven IR-Absorptionsbanden bei 2050 und 2000 cm⁻¹. Mit Morpholin setzte sich 7 zum Thioharnstoff-Derivat 8 um.

3. Zusammenfassung und Diskussion. – Die Umsetzungen der 4,4-Dimethyl-1,3-thiazol-5(4*H*)-thione **1a**–**d** mit **2a** verlaufen analog wie mit früher untersuchten Diazo-Verbindungen. In einer 1,3-dipolaren Cycloaddition werden 2,5-Dihydro-1,3,4-thiadiazole

²) Die Struktur A dieser Verbindung ist inzwischen mittels *Röntgen*-Kristallstrukturbestimmung bewiesen worden.

vom Typ III gebildet, die unter spontaner N₂-Abspaltung die Thiirane *trans*- und *cis*-4a-c liefern. Es ist anzunehmen, dass es sich auch bei den primär gebildeten Cycloaddukten um Gemische des *trans*- und *cis*-Isomeren handelt (*Schema 4*), die unter den Reaktionsbedingungen nicht stabil sind³). *Kellogg* und Mitarbeiter haben nämlich gezeigt [9-11], dass sowohl die N₂-Abspaltung aus 2,5-Dihydro-1,3,4-thiadiazolen als auch die

Elektrocyclisierung der dabei gebildeten Thiocarbonyl-ylide stereospezifisch entsprechend den *Woodward-Hoffmann*-Regeln verlaufen: So wird z. B. aus *trans-2,5-Di(tertbutyl)-2,5-dihydro-1,3,4-thiadiazol (9)* nur *cis-2,3-Di(tert-butyl)thiiran (11)* gebildet (*Schema 5*), und *trans-2,5-Diethyl-2,5-dihydro-1,3,4-thiadiazol reagiert mit Acetylendicarbonsäure-dimethylester ausschliesslich zu <i>trans-2,5-Diethyl-2,5-dihydrothiophen-3,4-*

³) Qualitative Betrachtungen zeigen, dass die Stabilität der Cycloaddukte III (*Schema 1*) in der Reihe $R^3 = t$ -Bu > Me > Ph > H abnimmt.

dicarbonsäure-dimethylester. In beiden Fällen führt die N₂-Abspaltung somit selektiv zum (E,Z)-konfigurierten Thiocarbonyl-ylid vom Typ 10 als Zwischenprodukt; die Cyclisierung zum Thiiran erfolgt dann konrotatorisch.

Die thermische Stabilität der Thiirane **4a–c** ist geringer als diejenige der 2,2-Diphenyl-Derivate (**IV**, $\mathbb{R}^3 = \mathbb{P}$); Schema 1) [1], sie ist aber grösser als bei den entsprechenden 2,2-Dimethyl- [2] oder 2,2-unsubstituierten Derivaten [3]. Erwähnenswert ist der Befund, dass die Entschwefelung der Thiirane **4b** und **c** stereospezifisch verläuft: Aus den *trans*-Isomeren bilden sich (*E*)- und aus den *cis*-Isomeren (*Z*)-Benzyliden-Derivate (**5b** bzw. **5c**). Diese Beobachtung ist in Übereinstimmung mit vielen Beispielen aus der Literatur (vgl. [12–14]). So berichteten z. B. Neureiter und Bordwell, dass die Umsetzung von *cis*und *trans*-2,3-Dimethylthiiran mit (EtO)₃P mit 99% Stereospezifität zu (*Z*)- bzw. (*E*)-But-2-en führt [15], und Vollhardt und Bergman zeigten, dass die Entschwefelung von *cis*und *trans*-2,3-Diethinylthiiran unter Retention der Konfiguration zu (*Z*)- bzw. (*E*)-Hex-3-en-1,5-diin verläuft [16]. Obwohl der genaue Mechanismus dieser Entschwefelung nicht bekannt ist, spricht die hohe Stereospezifität für einen konzertierten Verlauf.

Unter der Annahme, dass die Struktur der Thiirane 4a-c analog zu der durch eine *Röntgen*-Kristallstrukturanalyse bestimmten von IV ($R^1 = R^3 = Ph$, $R^2 = Me$) ist [1], gehorcht die stereospezifische Entschwefelung dem 'least-motion'-Prinzip: Das C(2)-Atom des Thiirans liegt nahezu in der durch den Thiazol-Ring bestimmten Ebene, das Thiiran-S-Atom weit ausserhalb dieser Ebene. Da die Substituenten an C(2) eher eine trigonale Pyramide als ein Tetraeder bilden, ist die Geometrie der Benzyliden-Derivate 5 in derjenigen der Thiirane 4 schon vorgegeben.

Die Umsetzung von Thiocarbonyl- mit Diazo-Verbindungen hat als Alternative zur *Wittig*-Reaktion präparative Bedeutung für die Synthese sterisch gehinderter Olefine, wie z. B. [Di(*tert*-butyl)methyliden]camphan (**12**; *Schema* 6) erlangt [17] (vgl. [18]). Dabei reagieren die durch 1,3-dipolare Cycloaddition gebildeten 2,5-Dihydro-1,3,4-thiadiazole durch Eliminierung von N₂ und S zu den Alkenen. Der Vorteil dieser insbesondere von *Kellogg et al.* [9] und *Barton* und *Willis* [19] entwickelten (C=C)-Verknüpfung liegt darin, dass die sterische Wechselwirkung im intermolekularen Schritt, d. h. bei der 1,3-dipolaren Cycloaddition, relativ gering ist, und dass die Abspaltungen von N₂ und S als intramolekulare Schritte durch Substituenten wenig beeinflusst werden [13].

Die Umsetzung von 1 und 2a in Gegenwart von DBU führt zu aromatischen 1,3,4-Thiadiazolen 6 und 7 (Schema 3 und 4), wobei der ursprüngliche 1,3-Thiazol-Ring geöffnet wird. Mechanistisch ist diese Reaktion einfach durch Deprotonierung der primären Cycloaddukte trans/cis-3 zu erklären (Schema 4). Im Falle von 3a-d ist eine relativ starke Base notwendig, während das stärker saure Proton im Cycloaddukt mit Diazoessigsäure-ethylester schon mit Anilin abgespalten wird⁴). Handelt es sich beim Substituenten R¹ um eine Ph- oder PhCH₂-Gruppe, führt die Öffnung des 1,3-Thiazol-Ringes zu einer Thioamid-Gruppe ($\rightarrow 6$), während im Falle von R¹ = Alkylthio unter Abspaltung des Alkyl-thiolats das Isothiocyanat 7 entsteht.

Wir danken unsern analytischen Abteilungen für Elementaranalysen und IR-Spektren (*H. Frohofer*), ¹H- und ¹³C-NMR-Spektren (*T. Plüss*) und Massenspektren (Frau Dr. *A. Lorenzi*), Frau *I. Klingenfuss* für ihre Hilfe bei den Berechnungen der Kristallstrukturbestimmungen, sowie dem *Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung* und der *F. Hoffmann-La Roche AG*, Basel, für finanzielle Unterstützung. *G. M.* dankt dem *Polnischen Komitee zur Förderung wissenschaftlicher Forschung* (*KBN*) für Finanzhilfe im Rahmen des Projektes PB 051/P3/93/05.

Experimenteller Teil

Allgemeines. S. [1]. IR-Spektren in CHCl₃, NMR-Spektren in CDCl₃, CI-MS mit NH₃.

1. Ausgangsmaterialien. Phenyldiazomethan (2a) wurde jeweils direkt vor der Umsetzung mit 1 durch Behandlung von Benzaldehyd-(2,4,6-triisopropylbenzol)sulfonyl-hydrazon [6] [7] mit NaOH in H₂O/Toluol und Bu₄NHSO₄ als Phasentransfer-Katalysator erzeugt [5]. Nach 15–20 min Rühren bei 40–45° wurde die orange-rote Toluol-Lsg. abgetrennt, 2 × mit verd. NaCl-Lsg. gewaschen und ohne weitere Reinigung eingesetzt. 2-Benzyl- und 2-Phenyl-4,4-dimethyl-1,3-thiazol-5(4H)-thion (1a bzw. 1b) wurden nach [20], 2-(Methylthio)- und 2-(Isopropylthio)-4,4-dimethyl-1,3-thiazol-5(4H)-thion (1c bzw. 1d) nach [21] hergestellt.

2. Umsetzung der 1,3-Thiazol-5(4H)-thione **1a-c** mit **2a**. 2.1. Allgemeine Vorschrift. Das entsprechende Thiazol-thion **1** wurde in 1 ml Toluol gelöst und zu einer aus 4 bis 5 mol-equiv. Hydrazon frisch hergestellten Phenyldiazomethan-Lsg. gegeben. Die Mischung wurde anschliessend 3 bis 4 h bei RT. gerührt. Das nach dem Abdampfen des Lsgm. i. RV. erhaltene Rohprodukt wurde mittels SC (Hexan/AcOEt 10:1) aufgearbeitet, wobei jeweils zwei diastereoisomere Thiirane isoliert wurden.

2.2. Umsetzung von 1a. Es wurden 66 mg (0,28 mmol) 1a und aus 446 mg (1,15 mmol) Hydrazon hergestelltes 2a ungesetzt.

trans-5-Benzyl-7,7-dimethyl-2-phenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (trans-4a). $R_{\rm f}$ 0,2: 31 mg (34%). Farbloses Öl. IR: 2960m, 1615s, 1600m, 1490s, 1450m, 1380w, 1360m, 1245m, 1160m, 1130m (br.), 1105m (br.), 1070m, 1045m, 1025w, 1000w, 970w, 875w, 845w, 695s, 655m, 630m. ¹H-NMR: 7,45-7,25 (m, 10 arom. H); 4,67 (s, CH); 3,90, 3,81 (*AB*, *J* = 14,9, PhCH₂); 1,30, 0,84 (2s, 2 Me). ¹³C-NMR (CDCl₃): 164,5 (s, C(5)); 135,6, 133,7 (2s, 2 arom. C); 129,7–127,4 (arom. CH); 78,5, 76,0 (2s, C(3), C(7)); 42,9 (d, C(2)); 41,6 (t, PhCH₂); 28,3, 22,6 (2q, 2 Me). CI-MS: 328 (8), 327 (21), 326 (100, [*M* + 1]⁺), 295 (12), 294 (61, [(*M* + 1) – S]⁺).

cis-5-*Benzyl-7,7-dimethyl-2-phenyl-1,4-dithia-6-azaspiro*[2.4]*hept-5-en* (*cis-4a*). $R_f 0,1:56 \text{ mg}$ (61%). Farbloses Öl, das bei -20° kristallisiert. Schmp. 59,7-61,2°. IR: 2980s, 1615s, 1600s, 1495s, 1450s, 1380m, 1360m, 1145m (br.), 1105s (br.), 1075m, 1030m, 1000w, 975w, 935w, 880m, 830w, 695s, 625m. ¹H-NMR: 7,35-7,15 (*m*, 10 arom. H); 4,07 (*s*, CH); 3,77 (*s*, PhCH₂); 1,45, 1,43 (2*s*, 2 Me). ¹³C-NMR: 164,4 (*s*, C(5)); 135,5, 134,1 (2*s*, 2 arom. C); 127,7-125,9 (arom. CH); 77,9, 77,6 (2*s*, C(3), C(7)); 42,0 (*d*, C(2)); 40,4 (*t*, PhCH₂); 24,9, 23,3 (2*q*, 2 Me). CI-MS: 328 (9), 327 (19), 326 (100, $[M + 1]^+$), 295 (14), 294 (73, $[(M + 1) - S]^+$). Anal. ber. für C₁₉H₁₉NS₂ (325,50): C 70,11, H 5,88, N 4,30, S 19,70; gef.: C 70,07, H 5,90, N 4,53, S 20,03.

2.3. Umsetzung von 1b. Es wurden 115 mg (0,52 mmol) 1b und aus 818 mg (2,1 mmol) Hydrazon hergestelltes 2a umgesetzt.

trans-7,7-Dimethyl-2,5-diphenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (trans-**4b**). $R_{\Gamma}0,34:48 \text{ mg} (30\%)$. Farbloses Öl, das bei -20° kristallisiert. Schmp. 63,9–65,9°. IR: 2980m, 1605m, 1580m, 1495m, 1450m, 1385w, 1365w,

⁴) In geringem Ausmass (< 10%) wird die Bildung von A^2) schon unter den Reaktionsbedingungen in Abwesenheit einer Base beobachtet [4].

1315*w*, 1270*s*, 1240 (sh), 1165*m*, 1135*s*, 1075*m*, 1050*m*, 1030*w*, 1005*w*, 960*s*, 700*s*, 695*s*, 665*w*, 615*w*, 605*w*. ¹H-NMR: 7,8–7,75 (*m*, 2 arom. H); 7,55–7,3 (*m*, 8 arom. H); 4,86 (*s*, CH); 1,38, 0,95 (2*s*, 2 Me). ¹³C-NMR: 161,7 (*s*, C(5)); 133,6, 133,2 (2*s*, 2 arom. C); 131,2–127,7 (arom. CH); 79,0, 75,6 (2*s*, C(3), C(7)); 42,8 (*d*, C(2)); 28,3, 22,5 (2*q*, 2 Me). CI-MS: 324 (7), 314 (6), 313 (13), 312 (66, $[M + 1]^+$), 282 (5), 281 (19), 280 (100, $[(M + 1) - S]^+$). Anal. ber. für C₁₈H₁₇NS₂ (311,47): C 69,41, H 5,50, N 4,50, S 20,59; gef.: C 69,44, H 5,60, N 4,64, S 20,96.

cis-7,7-Dimethyl-2,5-diphenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (cis-4b). R_f 0,22: 85 mg (52%). Farbloses Öl. IR: 2975s, 2935m, 1600s, 1580m, 1495m, 1450s, 1385m, 1365m, 1335w, 1315m, 1300w, 1265s, 1140m, 1125m, 1075m, 1050w, 1030w, 1000w, 955s, 910s, 840w, 695s, 665 (sh), 650w, 615m. ¹H-NMR: 7,75-7,7 (m, 2 arom. H); 7,5-7,3 (m, 8 arom. H); 4,17 (s, CH); 1,55, 1,52 (2s, 2 Me). ¹³C-NMR: 162,7 (s, C(5)); 136,8, 133,1 (2s, 2 arom. C); 131,1-127,7 (arom. CH); 79,4, 78,6 (2s, C(7), C(3)); 43,0 (d, C(2)); 26,3, 24,7 (2q, 2 Me). CI-MS: 314 (10), 313 (18), 312 (100, $[M + 1]^+$), 300 (5), 281 (11), 280 (62, $[(M + 1) - S]^+$).

2.4. Umsetzung von 1c. Es wurden 120 mg (0,63 mmol) 1c und aus 1,1 g (2,8 mmol) Hydrazon hergestelltes 2a umgesetzt.

trans-7,7-Dimethyl-5-(methylthio)-2-phenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (trans-4c). R_f 0,35: 58 mg (33%). Schwach gelbes Öl. IR: 2960m, 2920m, 1625w, 1595w, 1560s, 1490m, 1445m, 1380w, 1360m, 1310w, 1240w (br.), 1160m, 1130s, 1070w, 1040w, 1025w, 985s, 950s, 880w, 695s, 655m. ¹H-NMR: 7,5-7,45, 7,4-7,3 (m, 5 arom. H); 4,71 (s, CH); 2,52 (s, MeS); 1,27, 0,86 (2s, 2 Me). ¹³C-NMR: 162,0 (s, C(5)); 133,3 (s, arom. C); 131,1-127,9 (arom. CH); 80,6, 78,8 (s, C(3), C(7)); 42,5 (d, C(2)); 28,3, 22,8 (2q, 2 Me); 14,7 (q, MeS). CI-MS: 382 (15, $[M + 1]^+$), 252 (10), 251 (16), 250 (100, $[(M + 1) - S]^+$).

cis-7,7-Dimethyl-5-(methylthio)-2-phenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (cis-4c). R_f 0,22: 96 mg (54%). Farbloses Öl, das bei -20° kristallisiert. Schmp. 45,8-47,0°. IR: 2960m, 2920m, 1595w, 1560s, 1550s, 1490m, 1445m, 1380w, 1360m, 1310w, 1230w (br.), 1160m, 1135m (br.), 1070w, 1045w, 1025w, 985s, 945s, 915m, 885w, 835w, 695s, 665w. ¹H-NMR: 7,4-7,3 (m, 5 arom. H); 4,09 (s, CH); 2,47 (s, MeS); 1,46, 1,41 (2s, 2 Me). ¹³C-NMR⁵): 136,5 (s, arom. C); 128,4, 128,2, 127,7 (3s, arom. CH); 79,4, 79,1 (2s, C(3), C(7)); 43,0 (d, C(2)); 26,4, 24,7 (2q, 2 Me); 14,7 (q, MeS). CI-MS: 284 (11), 283 (13), 282 (82, $[M + 1]^+$), 252 (9), 251 (15), 250 (100, $[(M + 1) - S]^+$).

3. Entschwefelung der Thiirane 4b, c. 3.1. Allgemeine Vorschrift. Das entsprechende Thiiran und Ph₃P wurden in abs. THF (*ca.* 5 ml pro 0,1 mmol Thiiran) gelöst und 16–18 h unter Rückfluss erhitzt. Das nach Abdampfen des Lsgm. i. RV. erhaltene Produkt wurde mittels SC (Hexan/Et₂O 10:1 bzw. Hexan/AcOEt 10:1) gereinigt.

3.2. Entschwefelung von trans-**4b**. Es wurden 70 mg (0,22 mmol) trans-**4b** und 71 mg (0,27 mmol) Ph₃P umgesetzt. SC mit Hexan/Et₂O 10:1: 38 mg (62%) (E)-4,5-Dihydro-4,4-dimethyl-2-phenyl-5-(phenylmethyliden)-1,3-thiazol ((E)-**5b**). Farbloses Öl, das bei -20° erstarrt. Schmp. 47,6–50,1°. IR: 2980m, 1610m, 1580m, 1490m, 1450m, 1360w, 1255m, 1165s (br.), 1125 (sh), 1070m, 1025w, 955s, 900m, 690s, 615m, ¹H-NMR: 7,8-7,75 (m, 2 arom. H); 7,5–7,25 (m, 8 arom. H); 6,87 (s, CH); 1,46 (s, 2 Me). ¹³C-NMR: 160,4 (s, C(2)); 150,1, 137,3, 133,3 (3s, 2 arom. C, C(5)); 131,1–127,0 (arom. CH); 120,5 (d, CH); 81,2 (s, C(4)); 28,0 (q, 2 Me). CI-MS: 282 (5), 281 (17), 280 (100, $[M + 1]^+$), 176 (11), 161 (20). Anal. ber. für C₁₈H₁₇NS (279,41): C 77,38, H 6,13, N 5,01, S 11,48; gef.: C 77,17, H 6,36, N 5,09, S 11,65.

3.3. Entschwefelung von cis-4b. Es wurden 0,131 mg (0,42 mmol) cis-4b und 0,153 mg (0,58 mmol) Ph₃P umgesetzt. SC mit Hexan/Et₂O 10:1: 50 mg (43%) (*Z*)-4,5-Dihydro-4,4-dimethyl-2-phenyl-5-(phenylmethyliden)-1,3-thiazol ((*Z*)-5b). Farblose Kristalle. Schmp. 83,2-85,5°. IR: 2960m, 2920w, 1615m, 1600m, 1595m, 1575w, 1490m, 1455w, 1440m, 1375w, 1355w, 1310w, 1255s, 1170s, 1130 (sh), 1070w, 1025w, 995w, 950s, 915m, 850w, 685s, 615m. ¹H-NMR: 7,9-7,85 (m, 2 arom. H); 7,5-7,35, 7,25-7,2 (2m, 8 arom. H); 6,53 (s, CH); 1,62 (s, 2 Me). ¹³C-NMR: 160,3 (s, C(2)); 147,1, 136,9, 133,0 (3s, 2 arom. C, C(5)); 131,1-126,4 (arom. CH); 118,1 (d, CH); 84,9 (s, C(4)); 29,4 (q, 2 Me). CI-MS: 282 (5), 281 (17), 280 (100, $[M + 1]^+$).

3.4. Entschwefelung von trans-4c. Es wurden 65 mg (0,23 mmol) trans-4c und 80 mg (0,3 mmol) Ph₃P umgesetzt. SC mit Hexan/AcOEt 10:1: 36 mg (63%) (E)-4,5-Dihydro-4,4-dimethyl-2-(methylthio)-5-(phenylme-thyliden)-1,3-thiazol ((E)-5c)⁶). Schwach gelbes Öl. IR: 2980m, 2930m, 1625w, 1570s, 1490m, 1450w (br.), 1380w, 1360m, 1315w, 1160s, 1135 (sh), 1070m, 990s, 960m, 900m. ¹H-NMR: 7,5-7,15 (m, 5 arom. H); 6,72 (s, CH); 2,52 (s, MeS); 1,37 (s, 2 Me). ¹³C-NMR: 158,1 (s, C(2)); 150,4, 137,0 (2s, 1 arom. C, C(5)); 131,2-127,0 (arom. CH); 120,1 (d, CH); 80,8 (s, C(4)); 28,0 (q, 2 Me); 14,6 (q, MeS). CI-MS: 252 (8), 251 (13), 250 (100, $[M + 1]^+$), 230 (8), 209 (11).

3.5. Entschwefelung von cis-4c. Es wurden 74 mg (0,26 mmol) cis-4c und 61 mg (0,23 mmol) Ph₃P umgesetzt. SC mit Hexan/AcOEt 10:1: 36 mg (56%) (Z)-4,5-Dihydro-4,4-dimethyl-2-(methylthio)-5-(phenylmethyliden)-1,3-

⁵) Das Signal für C(5) konnte nicht lokalisiert werden.

⁶) Verbindung (E)-5c konnte nicht in reiner Form erhalten werden.

thiazol ((Z)-**5c**). Farblose Kristalle. Schmp. 99,7–101,8°. IR: 2980s, 2930m, 1620w, 1575s, 1495w, 1485w, 1445m, 1380w, 1360w, 1315w, 1165s, 1125 (sh), 1075w, 990s, 960m, 915s, 850w. ¹H-NMR: 7,35–7,1 (m, 5 arom. H); 6,38 (s, CH); 2,52 (s, MeS); 1,46 (s, 2 Me). ¹³C-NMR: 158,8 (s, C(2)); 147,6, 136,8 (2s, 1 arom. C, C(5)); 128,5, 127,8, 126,7 (3d, arom. CH); 117,8 (d, CH); 84,4 (s, C(4)); 29,6 (q, 2 Me); 14,7 (q, MeS). CI-MS: 252 (7), 251 (15), 250 (100, $[M + 1]^+$). Anal. ber. für C₁₃H₁₅NS₂ (249,40): C 62,61, H 6,06, N 5,62, S 25,71; gef.: C 62,35, H 6,08, N 5,45, S 25,67.

4. Umsetzung der 1,3-Thiazol-5(4H)-thione **1a-d** mit **2a** und DBU. 4.1. Allgemeine Vorschrift. Das entsprechende Thiazol-thion wurde in 1 ml Toluol gelöst und zu einer aus 4-5 equiv. Hydrazon hergestellten Lsg. von **2a** gegeben. Nach Zugabe von *ca*. 2 mol-equiv. 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) wurde 2 h bei RT. gerührt. Das nach Abdampfen des Lsgm. i. RV. erhaltene Produkt wurde mittels SC gereinigt.

4.2. Umsetzung von 1a. Es wurden 63 mg (0,27 mmol) 1a, 80 mg (0,53 mmol) DBU und aus 438 mg (1,13 mmol) Hydrazon hergestelltes 2a umgesetzt. SC mit Hexan/Et₂O 1:10: 70 mg (73%) N-[*1-Methyl-1-(5-phenyl-1,3,4-thia-diazol-2-yl)ethyl]phenylessigsäure-thioamid* (6a). Hellgelbe Kristalle. Schmp. 174,0–176,5°. IR: 3340m, 2990m, 1600w, 1515s, 1490m, 1455s, 1395s, 1375m, 1360m, 1255m, 1165m, 1115s, 1090 (sh), 1000w, 975w, 695m, 685s, 655w, 620m. ¹H-NMR: 7,95–7,9 (m, 2 arom. H); 7,5–7,3 (m, 8 arom. H); 4,11 (s, CH₂); 1,97 (s, 2 Me). ¹³C-NMR: 201,8 (s, CS); 174,9, 169,2 (2s, C(2), C(5)); 135,4, 130,1 (2s, 2 arom. C); 131,1, 129,3, 129,2, 129,1, 127,9, 127,8 (6d, arom. CH); 58,8 (s, Me₂C); 55,1 (t, CH₂); 28,1 (q, 2 Me). CI-MS: 356 (12), 355 (23), 354 (100, [M + 1]⁺), 338 (6), 203 (6), 200 (10). Anal. ber. für C₁₉H₁₉N₃S₂ (353,51): C 64,55, H 5,42, N 11,89, S 18,14; gef.: C 64,54, H 5,66, N 11,62, S 17,97.

4.3. Umsetzung von **1b**. Es wurden 44 mg (0,2 mmol) **1b**, 65 mg (0,43 mmol) DBU und aus 382 mg (0,99 mmol) Hydrazon hergestelltes **2a** umgesetzt. SC mit Hexan/AcOEt 1:1: 55 mg (81 %) N-[*1-Methyl-1-(5-phenyl-1,3,4-thia-diazol-2-yl)ethyl]thiobenzamid* (**6b**). Gelbe Kristalle. Schmp. 161,4–162,9°. IR: 3380m, 3310m, 2970m, 1515s, 1505 (sh), 1485m, 1455s, 1445s, 1380s, 1355s, 1310w, 1260s, 1155m, 1090m, 1070w, 1050m, 1035m, 975m, 685s, 655w, 620m. ¹H-NMR: 8,0–7,95 (m, 2 arom. H); 7,85–7,75 (m, 2 arom. H); 7,5–7,35 (m, 6 arom. H); 2,21 (s, 2 Me). ¹³C-NMR: 198,6 (s, CS); 175,2, 169,1 (2s, C(2), C(5)); 142,7, 129,8 (2s, 2 arom. C); 131,0, 130,9, 129,0, 128,2, 127,7, 126,5 (6d, arom. CH); 59,I (s, Me₂C); 28,1 (q, 2 Me). CI-MS: 342 (10), 341 (22), 340 (100, [*M* + 1]⁺). Anal. ber. für C₁₈H₁₇N₃S₂ (339,48): C 63,68, H 5,05, N 12,38, S 18,89; gef.: C 63,95, H 5,06, N 12,39, S 18,61.

4.4. Umsetzung von 1c. Es wurden 54 mg (0,28 mmol) 1c, 80 mg (0,53 mmol) DBU und aus 424 mg (1,1 mmol) Hydrazon hergestelltes 2a umgesetzt. SC mit Hexan/AcOEt 3:1: 42 mg (43%) N-[*1-Methyl-1-(5-phenyl-1,3,4-thia-diazol-2-yl)ethyl]-isothiocyanat* (7). Farblose Kristalle. Schmp. 88,5–91,2°. IR: 2990*m*, 2050*s*, 1995*s*, 1460*m*, 1425*m*, 1385*w*, 1370*w*, 1315*w*, 1255*m*, 1180*m*, 1165 (sh), 1105*m*, 1075*w*, 1060*m*, 1010*w*, 1000*w*, 980*m*, 890*w*, 685*w*. ¹H-NMR: 8,0–7,95 (*m*, 2 arom. H); 7,55–7,45 (*m*, 3 arom. H); 2,00 (*s*, 2 Me). ¹³C-NMR⁷): 173,2, 169,5 (2*s*, C(2), C(5)); 129,8 (*s*, arom. C); 131,4, 129,2, 127,9 (3*d*, arom. CH); 61,8 (*s*, Me₂C); 31,1 (*q*, 2 Me). CI-MS: 279 (22, $[M + 18]^+$), 264 (8), 263 (14), 262 (100, $[M + 1]^+$). Anal. ber. für C₁₂H₁₁N₃S₂ (261,37): C 55,15, H 4,24, N 16,08, S 24,54; gef.: C 55,29, H 4,20, N 15,97, S 24,95.

4.5. Umsetzung von 2-(Isopropylthio)-4,4-dimethyl-1,3-thiazol-5(4H)-thion (1d). Es wurden 42 mg (0,19 mmol) 1d, 56 mg (0,37 mmol) DBU und aus 300 mg (0,78 mmol) Hydrazon hergestelltes 2a umgesetzt. SC mit Hexan/AcOEt 3:1: 33 mg (66%) 7. Farblose Kristalle. Schmp. 92,2–94,5°.

5. Umsetzung von 7 mit Morpholin. Eine Lsg. von 39 mg (0,15 mmol) 7 in 5 ml Et₂O wurde bei RT. mit 35 mg (0,4 mmol) Morpholin versetzt, wobei sich schon nach wenigen min ein Niederschlag bildete. Nach 15 min Rühren wurde der Niederschlag abfiltriert, mit Et₂O gewaschen und i. HV. getrocknet: 39 mg (75%) N-[*1-Methyl-1-(5-phenyl-1,3,4-thiadiazol-2-yl]ethyl]morpholin-4-carbothioamid* (8). Farbloser Festkörper. Schmp. 139,3–130,3°. IR: 3430w, 3360m, 2970s, 2860m, 1552m (br.), 1460s, 1380s, 1335s, 1270s, 1150m, 1120s, 1070m, 1025m, 1000m, 980m, 895w, 870w, 685m. ¹H-NMR: 8,0–7,9 (*m*, 2 arom. H); 7,55–7,45 (*m*, 3 arom. H); 3,86, 3,76 (*AA'MM'*, 4 CH₂); 2,14 (*s*, 2 Me). ¹³C-NMR: 181,1 (*s*, CS); 177,6, 169,2 (2*s*, C(2″), C(5″)); 130,0 (*s*, arom. C); 131,1, 129,1, 127,8 (3*d*, arom. CH); 66,1, 47,5 (2*t*, 4 CH₂); 58,0 (*s*, Me₂C); 29,7 (*q*, 2 Me). CI-MS: 351 (7), 350 (13), 349 (64, [*M* + 1]⁺), 264 (9), 263 (15), 262 (100, [(*M* + 1) - C₄H₅NO]⁺), 220 (11), 206 (5), 205 (35), 204 (23), 203 (38), 88 (53). Anal. ber. für C_{14H20}N₄OS₂ (348,49): C 55,15, H 5,78, N 16,08, S 18,40; gef.: C 55,21, H 5,63, N 15,90, S 18,59.

6. Röntgen-Kristallstrukturbestimmungen von (Z)-5c und 6b (s. Tab.3 und Fig.)⁸). Intensitätsmessung und Verfeinerung. Alle Intensitätsmessungen wurden auf einem Rigaku-AFC5R-Diffraktometer im '(ω -2 θ)-scan'-Mo-

⁷) Das Signal für SCN ist vermutlich durch das eines arom. CH verdeckt.

⁸) Atomkoordinaten, Bindungslängen und -winkel sind beim Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, England, deponiert und können dort angefordert werden.

	(Z)-5c	6b
Kristallisiert aus	Hexan/THF	Hexan/Et ₂ O
Empirische Formel	$C_{13}H_{15}NS_2$	$C_{18}H_{17}N_{3}S_{2}$
Formelgewicht	249,39	339,47
Kristallfarbe	farblos	gelb
Kristallform	Platten	Prismen
Kristallgrösse	$0,08 \times 0,30 \times 0,43$	$0,33 \times 0,38 \times 0,45$
Kristallsystem	monoclin	triclin
Raumgruppe	$P2_1/n$	ΡĪ
Z	4	2
ber. Dichte [gcm ⁻³]	1,301	1,295
Gitterparameter		
Zahl der zentrierten Reflexe	24	24
Bereich [°]	$33 < 2\theta < 39$	$39 < 2\theta < 40$
a [Å]	8,527 (4)	9,495 (2)
<i>b</i> [Å]	7,806 (3)	12,283 (2)
c [Å]	19,133 (2)	8,642 (1)
α [°]	90	95,42 (1)
β[°]	90,10 (2)	115,59 (1)
γ [°]	90	73,44 (1)
Volumen [Å ³]	1273,5 (7)	870,8 (3)
Temp. [°C]	-100(1)	15(1)
Scan-Typ	$\omega - 2\theta$	$\omega - 2\theta$
linearer Absorptionskoeffizient μ (MoK _n) [cm ⁻¹]	3,740	2,950
Absorptionskorrektur min, max	0,808, 1,092	_
$2\theta_{\rm max}$ [°]	60	60
Zahl der gemessenen Reflexe	4182	5367
Zahl der symmetrieunabhängigen Reflexe	3694	5086
Zahl der verwendeten Reflexe $(I > 3\sigma(I))$	2570	3426
Zahl der Variablen	205	276
R	0,0366	0,0402
R_{ω}^{a})	0,0355	0,0353
Goodness of fit	1,440	2,118
Final $\Delta_{\rm max}/\sigma$	0,0002	0,0007
$\Delta \rho$ (min; max) [e Å ⁻³]	0,25; -0,23	0,32; -0,31

Tab. 3. Kristallographische Daten für die Verbindungen (Z)-5c und 6b

dus mit Mo K_{α} -Strahlung (Graphit-Monochromator) und einem '12-kW rotating anode generator' durchgeführt. Die Intensitäten der Reflexe wurden Korrekturen für *Lorentz* - und Polarisationsfaktoren und im Falle von (Z)-**5c** für Absorptionen (empirische Korrekturen, Programm DIFABS [22]) unterzogen. Die Strukturaufklärung mit direkten Methoden erfolgte mit dem Programmsystem SHELXS86 [23].

Alle schweren Atome wurden mit anisotropen Temp.-Faktoren verfeinert. Alle H-Atome konnten durch Differenzelektronendichte-Berechnungen lokalisiert werden; ihre Lagen wurden mit individuellen isotropen Temp.-Faktoren verfeinert. Zur Verfeinerung wurden 'full-matrix least-squares'-Verfahren verwendet. Die kristalographischen Daten sind in *Tab.3*, die Molekülstrukturen in der *Figur* wiedergegeben.

Die neutralen Streufaktoren für die schweren Atome wurden aus [24a] entnommen, diejenigen für H-Atome aus [25]. In F_c wurden anomale Dispersionseffekte berücksichtigt [26]; die Werte für $\Delta f''$ und $\Delta f''$ stammen aus [24b]. Alle Berechnungen wurden unter Benützung des TEXSAN-Software-Pakets [27] durchgeführt.

LITERATURVERZEICHNIS

- [1] G. Mlostoń, M. Petit, A. Linden, H. Heimgartner, Helv. Chim. Acta 1994, 77, 435.
- [2] G. Mlostoń, H. Heimgartner, Helv. Chim. Acta 1992, 75, 1825.
- [3] M. Kägi, A. Linden, G. Mlostoń, H. Heimgartner, Helv. Chim. Acta 1993, 76, 1715.
- [4] M. Kägi, Diplomarbeit, Universität Zürich, 1992.
- [5] D.S. Wulfman, S. Yousefian, J.M. White, Synth. Commun. 1988, 18, 2349.
- [6] N.J. Cusack, C.B. Reese, A.C. Risius, B. Roozpeikar, Tetrahedron 1976, 32, 2157.
- [7] C.C. Dudman, C.B. Reese, Synthesis 1982, 419.
- [8] C.K. Johnson, ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
- [9] R. M. Kellogg, S. Wassenaar, J. Buter, Tetrahedron Lett. 1970, 4689.
- [10] J. Buter, S. Wassenaar, R. M. Kellogg, J. Org. Chem. 1972, 37, 4045.
- [11] R. M. Kellogg, Tetrahedron 1976, 32, 2165.
- [12] H. Meier, in 'Houben-Weyl, Methoden der Organischen Chemie', Ed. D. Klamann, Thieme Verlag, Stuttgart, 1985, Band E11/2, S. 1512.
- [13] F.S. Guziec, Jr., L.J. Sanfilippo, Tetrahedron 1988, 44, 6241.
- [14] D. C. Dittmer, in 'Comprehensive Heterocyclic Chemistry', Ed. A. R. Katritzky und C. W. Rees, Pergamon Press, Oxford, 1984, Vol. 7, S. 131.
- [15] N.P. Neureiter, F.G. Bordwell, J. Am. Chem. Soc. 1959, 81, 578.
- [16] K. P. C. Vollhardt, R. Bergman, J. Am. Chem. Soc. 1973, 95, 7538.
- [17] D. H. R. Barton, F. S. Guziec, Jr., I. Shahak, J. Chem. Soc., Perkin Trans. 1 1974, 1794.
- [18] P.K. Claus, in 'Houben-Weyl, Methoden der Organischen Chemie', Ed. D. Klamann, Thieme Verlag, Stuttgart, 1985, Band E11/2, S. 1350.
- [19] D. H. R. Barton, B. J. Willis, J. Chem. Soc., Perkin Trans. 1 1972, 305.
- [20] D. Obrecht, R. Prewo, J. H. Bieri, H. Heimgartner, *Helv. Chim. Acta* 1982, 65, 1825; P. Wipf, Ch. Jenny, H. Heimgartner, *ibid.* 1987, 70, 1001.
- [21] J. Shi, Dissertation, Universität Zürich, 1993.
- [22] N. Walker, D. Stuart, Acta Crystallogr., Sect. A 1983, 39, 158.
- [23] G. M. Sheldrick, SHELXS-86. Acta Crystallogr., Sect. A 1990, 46, 467.
- [24] a) E.N. Maslen, A.G. Fox, M.A. O'Keefe, in 'International Tables for Crystallography', Vol.C, Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, pp. 477–486; b) D.C. Creagh, W.J. McAuley, *ibid.* pp. 219–222.
- [25] R.F. Stewart, E.R. Davidson, W.T. Simpson, J. Chem. Phys. 1965, 42, 3175.
- [26] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 1964, 17, 781.
- [27] TEXSAN, TEXRAY Single Crystal Structure Analysis Package, Version 5.0. Molecular Structure Corp., The Woodlands, Texas, 1989.